Modeling and Simulation of Water Softening by Nanofiltration Using Artificial Neural Network
Authors
Abstract:
An artificial neural network has been used to determine the volume flux and rejections of Ca2+ , Na+ and Cl¯, as a function of transmembrane pressure and concentrations of Ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in presence of polyelectrolytes. The feed-forward multi-layer perceptron artificial neural network including an eight-neuron hidden layer has the least error in modeling this non-linear process. The overall agreement between the artificial neural network results and experimental data is very good for both the volume flux and rejections, because the maximum values of normalized bias and error are -0.01122 and 1.0737 respectively.
similar resources
modeling and simulation of water softening by nanofiltration using artificial neural network
an artificial neural network has been used to determine the volume flux and rejections of ca2+ , na+ and cl¯, as a function of transmembrane pressure and concentrations of ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in presence of polyelectrolytes. the feed-forward multi-layer perceptron artificial neural network including an eight-neuron hidden la...
full textscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Simulation and modeling of friction welding of stainless steel to aluminum alloy using finite element method and artificial neural network
Aluminum to stainless steel joints are broadly used in industries in order to reduce fuel consumption. While fusion welding is not a suitable method to join these metals. solid state welding, like friction welding (FW), is an effective way to this process. However, risk of intermetallic compounds (IMCs) formation is probable in these welds. In previews investigations formation of FeAl3, Fe2Al5 ...
full textSimulation and modeling of friction welding of stainless steel to aluminum alloy using finite element method and artificial neural network
Aluminum to stainless steel joints are broadly used in industries in order to reduce fuel consumption. While fusion welding is not a suitable method to join these metals. solid state welding, like friction welding (FW), is an effective way to this process. However, risk of intermetallic compounds (IMCs) formation is probable in these welds. In previews investigations formation of FeAl3, Fe2Al5 ...
full textmodeling and simulation of apple drying, using artificial neural network and neuro -taguchi’s method
important parameters on apple drying process are investigated experimentally and modeled employing artificial neural network and neuro-taguchi's method. experimental results show that the apple drying curve stands in the falling rate period of drying. temperature is the most important parameter that has a more pronounced effect on drying rate than the other two parameters i.e. air velocity and ...
full textCell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
full textMy Resources
Journal title
volume 25 issue 4
pages 37- 45
publication date 2006-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023